Rayat Shikshan Sanstha's Sadguru Gadage Maharaj College, Karad (An Autonomous College) DEPARTMENT OF MATHEMATICS

## **Department of Mathematics**

# **B.Sc. II**

# Semester III & IV

## NEP syllabus to be implemented from July 2024 Onwards

### Major Papers Semester: III

## Subject Code: - MJ-BMT23-301 Paper V: Multivariable Calculus (Credit 02)

#### Course Outcomes (COs):

- 1. To study functions and several variables.
- 2. To find extreme value of multivariable functions using derivative.
- 3. Apply a range of techniques to solve differential equations.

| UNIT | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hours    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Allotted |
| 1    | Jacobian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12       |
|      | 1.1 Definition of Jacobian and examples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|      | 1.2 Properties of Jacobians.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      | 1.2.1 If J is Jacobian of u, v with respect to x, y and J' is Jacobian of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | x, y with respect to u, v then $JJ' = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|      | 1.2.2 If J is Jacobian of u, v, w with respect to x, y, z and J'is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|      | Jacobian of x, y, z with respect to u, v, w then $JJ' = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      | 1.2.3 If p, q are functions of u, v and u, v are functions of x, y then $\frac{\partial(n q)}{\partial x} = \frac{\partial(n q)}{\partial x} = $ |          |
|      | prove that $\frac{\partial(p,q)}{\partial(r,y)} = \frac{\partial(p,q)}{\partial(q,y)} \cdot \frac{\partial(q,y)}{\partial(r,y)}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|      | 1.2.4 If p, q, r are functions of u, v, w and u, v, w are functions of x,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | x z then prove that $\frac{\partial(p,q,r)}{\partial p} = \frac{\partial(p,q,r)}{\partial p} \frac{\partial(u,v,w)}{\partial p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|      | y, z then prove that $\frac{\partial(x,y,z)}{\partial(x,y,z)} = \frac{\partial(u,v,w)}{\partial(x,y,z)}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|      | 1.2.5 Examples on these properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 2    | Extreme Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12       |
|      | 2.1 Definition of Maximum, Minimum and stationary values of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|      | function of two variables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|      | 2.2 Conditions for maxima and minima (Statement only) and examples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|      | 2.3 Lagrange's method of undetermined multipliers of three variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|      | 2.3.1 the extreme values of the function $f(x, y, z)$ subject to the condition $\phi(x, y, z) = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|      | 2.3.2 The extreme values of the function $f(x, y, z)$ subject to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|      | condition $\phi(x, y, z) = 0$ and $\phi(x, y, z) = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 2.3.3 Examples based on Lagrange's method of undetermined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | multipliers of three variables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|      | 2.3.4 Errors and approximations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |

|   | Ondinany Simultaneous Differential Equations                     |    |
|---|------------------------------------------------------------------|----|
| 3 | Orumary Simulateous Differential Equations                       | 11 |
|   | 3.1 Simultaneous linear differential equations of the form       |    |
|   | $dx \_ dy \_ dz$                                                 |    |
|   | $\frac{1}{P} = \frac{1}{Q} = \frac{1}{R}.$                       |    |
|   | 3.2 Method of solving simultaneous linear differential equation. |    |
|   | 3.3 Geometrical interpretation.                                  |    |
|   | 3.4 Examples                                                     |    |
| 4 | Total Differential Equations                                     | 10 |
|   | 4.1Total differential equation $Pdx + Qdy + Rdz = 0$ .           |    |
|   | 4.2 Necessary condition for integrability of total differential  |    |
|   | equation.                                                        |    |
|   | 4.3 Method of solving total differential equation.               |    |
|   | a) Method of inspection                                          |    |
|   | b) One variable regarding as constant                            |    |
|   | 4.4 Geometrical interpretation                                   |    |
|   | 4.5 Geometrical relation between total differential equation and |    |
|   | simultaneous linear differential equation.                       |    |
|   | 4.6 Examples                                                     |    |

- 1. Differential & Integral Calculus; G. V. Kumbhojkar, G. V. Kumbhojkar; C. Jamnadas & Co.
- 2. Sharama and Gupta, Differential Equation, Krinshna Prakashan Media co., Meerat.

### **Reference Books:**

- 1. Gorakh Prasad, Differential Calculus, Pothishala Pvt Ltd., Allahabad
- 2. Diwan and Agashe, Differential Equation.

### Subject Code: - MJ-BMT23-302

### Paper VI: Integral Calculus (Credit 02)

**Course Outcomes (COs)** 

- **1.** Solving Beta and Gamma functions as a application of improper integral.
- 2. To solve improper integral with finite and unbounded range.
- **3.** To evaluate the Fourier series of various even and odd functions.
- 4. Calculate real form of Fourier series of standard periodic function.

| UNIT | Contents                                                                                                                  | Hours<br>Allotted |
|------|---------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1    | Gamma and Beta Functions                                                                                                  | 12                |
|      | 1.1 Definition of Gamma function                                                                                          |                   |
|      | 1.2 Properties of Gamma function                                                                                          |                   |
|      | 1.2.1  1 = 1.                                                                                                             |                   |
|      | 1.2.2 Recurrence formula: $ \overline{n} = (n-1) \overline{n-1}$ .                                                        |                   |
|      | 1.2.3 $ \overline{n}  = (n-1)!$ where n is a positive integer.                                                            |                   |
|      | 1.2.4 $\lim_{n\to\infty}  \overline{n} = \infty, \lim_{n\to0}  \overline{n} = 0.$                                         |                   |
|      | 1.2.5 $ \overline{n}  = 2 \int_0^\infty e^{-x^2} x^{2n-1} dx$ , $n > 0$ .                                                 |                   |
|      | 1.2.6 $ \overline{n} = \alpha^n \int_0^\infty e^{-\alpha x} x^{n-1} dx$ , where $n > 0$ , $\alpha > 0$ .                  |                   |
|      | 1.2.7 $\int_{0}^{\infty} e^{-kx} x^{n-1} dx = \frac{ \overline{n} }{k^{n}}$ where $n > 0$ , $\alpha > 0$ .                |                   |
|      | 1.2.8 $\left  \frac{1}{2} \right  = \sqrt{\pi}$ .                                                                         |                   |
|      | 1.3 Definition of Beta function                                                                                           |                   |
|      | 1.4 Properties of Beta function                                                                                           |                   |
|      | 1.4.1 Symmetric property: $\beta(m,n) = \beta(n,m)$ .                                                                     |                   |
|      | 1.4.2 $\beta(m,n) = 2 \int_0^{n/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta.$                                          |                   |
|      | 1.4.3 $\int_0^{\pi/2} \sin^p \theta \cos^q \theta d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2}\right).$ |                   |
|      | 1.4.4 $\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx.$                                                        |                   |
|      | 1.4.5 $\int_0^\infty \frac{x^{m-1}}{(a+bx)^{m+n}} dx = \frac{1}{a^{n}b^m} \beta(m,n).$                                    |                   |
|      | 1.4.6 $\int_0^\infty \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} dx = \beta(m,n).$                                                |                   |
|      | 1.5 Relation between Beta and Gamma function                                                                              |                   |
|      | $\beta(m,n) = \frac{ \overline{m} \overline{n}}{ \overline{m+n}}.$                                                        |                   |
|      | 1.6 Duplication formula:                                                                                                  |                   |
|      | $2^{2m-1} \overline{m}  m + \frac{1}{2} =  \overline{2m}\sqrt{\pi} .$                                                     |                   |
|      | $1.7  \left  \frac{\overline{1}}{4} \right  \cdot \left  \frac{\overline{3}}{4} \right  = \pi \sqrt{2}$                   |                   |

| 2 | Multiple Integrals                                                         | 12 |
|---|----------------------------------------------------------------------------|----|
|   | 2.1 Double integral: Evaluation of double integrals.                       |    |
|   | 2.2 Evaluation of double integrals in Cartesian coordinates.               |    |
|   | 2.3 Evaluation of double integrals over the given region.                  |    |
|   | 2.4 Evaluation of double integrals in polar coordinates.                   |    |
|   | 2.5 Evaluation of double integrals by changing the order of                |    |
|   | integration                                                                |    |
|   | 2.6 Triple integrals: Evaluation of triple integrals.                      |    |
| 3 | Fourier Series                                                             | 11 |
|   | 3.1 Definition of Fourier series with Dirichlet condition.                 |    |
|   | 3.2 Fourier series for the function $f(x)$ in the interval $[-\pi, \pi]$ . |    |
|   | 3.3 Fourier series for the function $f(x)$ in the interval $[-c, c]$ .     |    |
|   | 3.4 Fourier series for the function $f(x)$ in the interval $[0,2\pi]$ .    |    |
|   | 3.5 Fourier series for the function $f(x)$ in the interval $[0,2c]$ .      |    |
|   | 3.6 Even and odd functions.                                                |    |
|   | 3.7 Half Range series                                                      |    |
| 4 | Differentiation Under Integral Sign And Error Function                     | 10 |
|   | 4.1 Introduction                                                           |    |
|   | 4.2 Integral with its limit as constant.                                   |    |
|   | 4.3 Integral with limit as function of the parameter [Leibnitz             |    |
|   | rule]                                                                      |    |
|   | 4.4 Error Function                                                         |    |

1. P.N. and J. N. Wartikar, Elements of Applied Mathematics.

2. B. S. Phadatare, U. H. Naik, P. V. Koparde, P. D. Sutar, P. D. Suryvanshi, M. C. Manglurkar, A Text Book of Advanced Calculus Published by Shivaji University Mathematics Society (SUMS) ,2005.

### **Reference Books:**

1. N. Piskunov, Differential and Integral Calculus, Peace Publisheres.

2. Shanti Narayan, Integral Calculus, S. Chand and Company, New Delhi.

### Subject Code: - MJ-BMP23-303

# Mathematical Practical-III Semester-III

## Group A

| Sr. No | Торіс                                                                           |
|--------|---------------------------------------------------------------------------------|
| 1      | Examples on Jacobian                                                            |
| 2      | Examples on Extreme values for two variables                                    |
| 3      | Examples on Lagrange's Method of Undetermined Multipliers                       |
| 4      | Examples on ordinary simultaneous differential equation                         |
| 5      | Examples on total differential equation                                         |
| 6      | Examples on Gamma and Beta Function                                             |
| 7      | Examples on Evaluation of double integrals over the given region                |
| 8      | Examples on Fourier Series: $[0, 2\pi]$                                         |
| 9      | Examples on Fourier Series: $[-\pi, \pi]$                                       |
| 10     | Examples on Integral with limit as function of the parameter<br>[Leibnitz rule] |

# Group B

| Sr. No | Торіс                                                |
|--------|------------------------------------------------------|
| 1      | C-Introduction-I                                     |
| 2      | C-Introduction-II                                    |
| 3      | Complete structure of C-program                      |
| 4      | Simple C-program                                     |
| 5      | If statement, If else statement and switch statement |
| 6      | While loop and do while loop                         |
| 7      | For loop                                             |
| 8      | Go to, break continue statement                      |
| 9      | One dimensional array                                |
| 10     | Two-dimensional array                                |

### Minor Papers Semester: III Subject Code: - MN-BMT23-301

## Paper V: Calculus (Credit 02)

**Course Outcomes (COs):** 

- 1. To study functions and several variables.
- 2. To find extreme value of multivariable functions using derivative.
- 3. Apply a range of techniques to solve differential equations.

| UNIT | Content                                                                                                                                                        | Hours    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      |                                                                                                                                                                | Allotted |
| 1    | Jacobian                                                                                                                                                       | 12       |
|      | 1.1 Definition of Jacobians                                                                                                                                    |          |
|      | 1.2 Froperties of Jacobians.<br>1.2.1 If Lie Jacobian of u w with respect to x, y and $I'$ is                                                                  |          |
|      | I.2.1 If J is Jacobian of u, v with respect to u, v then $II' = 1$                                                                                             |          |
|      | 1.2.2 If L is Jacobian of u, v, w with respect to x, v, z and <i>l</i> ' is                                                                                    |          |
|      | Iacobian of x, y, z with respect to u, y, w then $II' = 1$                                                                                                     |          |
|      | 1.2.3 If p, g are functions of u, v and u, v are functions of x, v                                                                                             |          |
|      | then prove that $\frac{\partial(p,q)}{\partial(p,q)} = \frac{\partial(p,q)}{\partial(u,v)} = \frac{\partial(u,v)}{\partial(u,v)}$                              |          |
|      | then prove that $\frac{\partial}{\partial(x,y)} = \frac{\partial}{\partial(u,v)} \cdot \frac{\partial}{\partial(x,y)}$ .                                       |          |
|      | 1.2.4 If p, q, r are functions of u, v, w and u, v, w are functions                                                                                            |          |
|      | of x, y, z then prove that $\frac{\partial(p,q,r)}{\partial(r,y,z)} = \frac{\partial(p,q,r)}{\partial(u,v,w)} \cdot \frac{\partial(u,v,w)}{\partial(r,y,z)}$ . |          |
|      | 1.2.5 Examples on these properties.                                                                                                                            |          |
|      |                                                                                                                                                                |          |
| 2    | Extreme Values                                                                                                                                                 | 12       |
|      | 2.1 Definition of Maximum, Minimum and stationary values of                                                                                                    |          |
|      | function of two variables.                                                                                                                                     |          |
|      | 2.2 Conditions for maxima and minima (Statement only) and                                                                                                      |          |
|      | 2.3 Lagrange's method of undetermined multipliers of three                                                                                                     |          |
|      | variables                                                                                                                                                      |          |
|      | 2.3.1 the extreme values of the function $f(x, y, z)$ subject to the                                                                                           |          |
|      | condition $\emptyset(x, y, z) = 0$ .                                                                                                                           |          |
|      | 2.3.2 The extreme values of the function $f(x, y, z)$ subject to                                                                                               |          |
|      | the condition $\emptyset(x, y, z) = 0$ and $\varphi(x, y, z) = 0$ .                                                                                            |          |
|      | 2.3.3 Examples based on Lagrange's method of undetermined                                                                                                      |          |
|      | multipliers of three variables.                                                                                                                                |          |
|      | 2.3.4 Errors and approximations.                                                                                                                               |          |
|      |                                                                                                                                                                |          |

3Gamma and Beta Functions111.1 Definition of Gamma function1.2 Properties of Gamma function1.1 Definition of Gamma function1.2.1 
$$|\overline{1}| = 1$$
.1.2.2 Recurrence formula:  $|\overline{n} = (n-1)|\overline{n-1}$ .1.2.3  $|\overline{n} = (n-1)!$  where n is a positive integer.1.2.4  $\lim_{n\to\infty} |\overline{n} = \infty| \lim_{n\to 0} |\overline{n} = 0$ .1.2.5  $|\overline{n} = 2\int_{0}^{\infty} e^{-xx} x^{n-1} dx$ ,  $n > 0$ .1.2.5  $|\overline{n} = 2\int_{0}^{\infty} e^{-xx} x^{n-1} dx$ ,  $n > 0$ .1.2.6  $|\overline{n} = a^n \int_{0}^{\infty} e^{-xx} x^{n-1} dx$ ,  $where n > 0, a > 0$ .1.2.7  $\int_{0}^{\infty} e^{-xx} x^{n-1} dx = \frac{|\overline{n}|}{k^n}$  where  $n > 0, a > 0$ .1.2.8  $|\overline{\frac{1}{2}} = \sqrt{\pi}$ .1.3 Definition of Beta function1.4 Properties of Beta function1.4.1 Symmetric property:  $\beta(m, n) = \beta(n, m)$ .1.4.2  $\beta(m, n) = 2\int_{0}^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$ .1.4.3  $\int_{0}^{\pi/2} \sin^{2n} \theta \cos^{q} \theta d\theta = \frac{1}{2} \beta \left( \frac{p+1}{2}, \frac{q+1}{2} \right)$ .1.4.4  $\beta(m, n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$ .1.4.5  $\int_{0}^{\infty} \frac{x^{m-1}}{(x+x)^{m+n}} dx = \beta(m, n)$ .1.5 Relation between Beta and Gamma function $\beta(m, n) = \frac{|\overline{m}|\overline{n}|}{|\overline{m+n}|}$ .1.6 Duplication formula: $2^{2m-1}|\overline{m}| \overline{m} + \frac{1}{2} = |\overline{2m}\sqrt{\pi}$ .1.7  $|\frac{1}{4}, |\frac{3}{4} = \pi\sqrt{2}$ 44Vector Calculus4.1 Differentiation of vector.4.2 Tangent line to curve.4.3 Velocity and Acceleration4.4 Gradient, Divergence and Curl; Definitions and examples4.5 Solenoidal and Irrational Vector4.6 Conservative vector field.4.7 Properties of Gradient Divergence and Curl4.7.1 If  $\overline{n}$  is a constant vector then  $div \, \overline{a} = 0$  and4

4.7.5 If  $\overline{f}$  is a vector point function and  $\Phi$  is a scalar point function then  $curl(\Phi \overline{f}) = grad \Phi \times \overline{f} + (\Phi curl \overline{f})$ . 4.7.6  $div(\overline{f} \times \overline{g}) = \overline{g}.curl \overline{f} - \overline{f}.curl \overline{g}$ 4.7.7  $divgrad \Phi = \nabla^2 \Phi$ 4.7.8  $curlgrad \Phi = \overline{0}$ . 4.7.9  $div curl \overline{f} = 0$ . 4.7.10  $curl curl \overline{f} = grad div \overline{f} - \nabla^2$ .

#### **Recommended Books:**

- 1. Differential & Integral Calculus; G. V. Kumbhojkar, G. V. Kumbhojkar; C. Jamnadas & Co.
- 2. Sharama and Gupta, Differential Equation, Krinshna Prakashan Media co., Meerat.

#### **Reference Books:**

- 1. Gorakh Prasad, Differential Calculus, Pothishala Pvt Ltd., Allahabad
- 2. Diwan and Agashe, Differential Equation.

## Subject Code: - MN-BMP23-303

## Mathematical Practical-III Semester-III

| Sr. No | Торіс                                                     |
|--------|-----------------------------------------------------------|
| 1      | Examples on Jacobian                                      |
| 2      | Examples on properties of Jacobian                        |
| 3      | Examples on Lagrange's Method of Undetermined Multipliers |
| 4      | Examples on Extreme values for two variables              |
| 5      | Examples on Gamma Function                                |
| 6      | Examples on Beta function                                 |
| 7      | Examples on Duplication formula                           |
| 8      | Examples on Gradient                                      |
| 9      | Examples on Divergence                                    |
| 10     | Examples on Curl                                          |

### Semester-III SEC-II Geogebra Application Developer (Theory)

### **Course Outcomes (Cos): On completion of the course, the students will able to:**

- 1. Grasp experimental, problem-oriented and research –oriented of learning of mathematics, both in the classroom and at home.
- 2. Prove theorems using Geogebra software.

| Unit | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hours<br>Allotted |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1    | Introduction to Geogebra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                |
|      | <ul> <li>1.1 About Geogebra Software and Geogebra website</li> <li>1.2 How to use the online interface of Geogebra</li> <li>1.3 Online resources available to teach various branches of<br/>Math using Geogebra</li> <li>1.4 Download and install Geogebra on Linux OS</li> <li>1.5 Open Geogebra in Ubuntu Linux using Dash home</li> <li>1.6 Benefits of Geogebra</li> <li>1.7 About Geogebra interface, Menu bar and Geometric tools</li> <li>1.8 Open Geogebra interface in Ubuntu Linux and windows<br/>100S</li> <li>1.9 How to delete objects, enable and disable grid and axis,<br/>Algebra and graphics views, change object properties of<br/>lines</li> <li>1.10 Dependent and independent objects, properties of<br/>graphics view.</li> </ul> |                   |
| 2    | Mathematics with Geogebra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                |
|      | 2.1Basics of Triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|      | 2.2Congruency of triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|      | 2.3Properties of Quadrilaterals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
|      | 2.4 Types of symmetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|      | 2.5Polynomials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |

### **Recommended Books:**

- Judith and Markus Hohenwarter, Introduction to GeoGebra, (Grant, Johannes Kepler University, Linz, Austria: Judith, Markus, and the GeoGebra Team, 2011),
  - 2. Markus Hohenwarter, The official Manual of GeoGebra.

### Semester-III SEC-III Geogebra Application Developer (Practical)

| Sr. No. | Торіс                                                                        |
|---------|------------------------------------------------------------------------------|
| 1       | Construction and prove side side rule of congruency.                         |
| 2       | Construction and proof of angle side angle rule of congruency                |
| 3       | Construction and proof of side angle side rule of congruency                 |
|         | Construction of parallelogram using parallel lines, kites using intersecting |
| 4       | circles, rhombus with a given length.                                        |
| 5       | Reflection of an object about a line, about a point.                         |
| 6       | Rotation of an object around a point.                                        |
|         | Use of input bar to type and display polynomials and Remainder theorem to    |
| 7       | divide polynomials                                                           |
| 8       | Slope, degree, zeros, roots and factorization of polynomial using Geogebra.  |

### Semester: IV Subject Code: - MJ-BMT23-401

### **Paper VII: Discrete Mathematics (Credit 02)**

#### **Course Outcomes (COs)**

- 1. To extend student's logical and mathematical maturity and ability to deal with abstraction
- 2. To understand the basic concept of graph theory.
- 3. Recognize standard valid and invalid argument forms.
- 4. Describe an algorithm and evaluate the time required for performance of an algorithm.

| UNIT | Contents                                                   | Hours    |
|------|------------------------------------------------------------|----------|
|      |                                                            | Allotted |
| 1    | Relations                                                  | 11       |
|      | 1.1 Product sets, Relations, Inverse relation              |          |
|      | 1.2 Pictorial representation of relations                  |          |
|      | 1.3 Composition of relations and matrices                  |          |
|      | 1.4 Types of relation – Reflexive, Symmetric,              |          |
|      | Anti symmetric, Transitive and its examples                |          |
|      | 1.5 Closure properties and its examples                    |          |
|      | 1.6 Equivalence relations and partitions.                  |          |
|      | 1.7 Examples on Equivalence relation                       |          |
|      | 1.8 Partial ordering relations.                            |          |
|      | 1.9 Congruence Relation                                    |          |
|      | 1.9.1 Theorem: (with proof) Let m be a positive integer.   |          |
|      | Then:                                                      |          |
|      | (i) For any integer a, we have $a \equiv a \pmod{m}$       |          |
|      | (ii) If $a \equiv b \pmod{m}$ , then $b \equiv a \pmod{m}$ |          |
|      | (iii) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ , |          |
|      | then $a \equiv c \pmod{m}$                                 |          |
|      | 1.9.2 Theorem: (with proof) Let $a \equiv c \pmod{m}$ and  |          |
|      | $b \equiv d \pmod{m}$ . then:                              |          |
|      | (i) $a + b \equiv c + d \pmod{m}$                          |          |
|      | (ii) $a.b \equiv c.d \pmod{m}$                             |          |
| 2    | Division Algorithm                                         | 11       |
|      | 2.1 Division Algorithm for positive integers (with proof)  |          |
|      | 2.2 Division Algorithm for integers (without proof)        |          |
|      | 2.3 Basic properties of divisible                          |          |
|      | 2.3.1 Theorem: (statement only) Let a, b, c are integers   |          |
|      | (i) If a b and b c, then a c                               |          |
|      | (ii) If a b then, for any integer x, a bx                  |          |
|      | (iii) If a b and a c. then $a (b+c)$ and $a (b-c)$         |          |
|      | (iv) If a b and b $\neq$ 0, then a = $\pm$ b or  a  <  b   |          |
|      | (v) If a b and b a, then $ a = b $ , i.e., $a=\pm b$       |          |
|      | (vi) If a 1, then $a=\pm 1$                                |          |

|   |                                                                                                                                                              | r  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 2.4 G.C.D.                                                                                                                                                   |    |
|   | 2.4.1 Theorem: (with proof) Let d is the smallest integer                                                                                                    |    |
|   | of the form $ax + by$ then $d = g.c.d.(a,b)$                                                                                                                 |    |
|   | 2.4.2 Theorem: (with proof) If $d = g.c.d.$ (a,b) then there                                                                                                 |    |
|   | exists integers x and y such that $d = ax + by$                                                                                                              |    |
|   | 2.5 Properties of g.c.d. (with proof)                                                                                                                        |    |
|   | 2.5.1 Theorem: (with proof) A positive integers                                                                                                              |    |
|   | d = gcd (a, b) if and only if d has following two                                                                                                            |    |
|   | properties:                                                                                                                                                  |    |
|   | (1) d divides both a and b                                                                                                                                   |    |
|   | (2) If c divides both a and b, then cld                                                                                                                      |    |
|   | 2.5.2 Simple properties of the greatest common divisor                                                                                                       |    |
|   | (with proof)                                                                                                                                                 |    |
|   | (a) $\operatorname{gcd}(a, b) = \operatorname{gcd}(b, a)$                                                                                                    |    |
|   | (a) get $(a, b) = get (b, a)$<br>(b) If $r > 0$ then $ged (ay, by) = y ged (a, b)$                                                                           |    |
|   | (b) If $d = acd (a, b)$ then $acd (ald bld) = 1$                                                                                                             |    |
|   | (c) If $\mathbf{u} = \gcd(a, b)$ , then $\gcd(a \mathbf{u}, b \mathbf{u}) = 1$<br>(d) For any integer $\mathbf{v}$ , $\gcd(a, b) = \gcd(a, b + a\mathbf{v})$ |    |
|   | (d) For any integer x, get $(a, b) = get (a, b + ax)$                                                                                                        |    |
|   | 2.7 Examples on Euclidean algorithm                                                                                                                          |    |
|   | 2.7 Examples on Euclidean algorithm.                                                                                                                         |    |
|   | 2.6 Kelatively prime integers<br>2.8.1 Theorem: (with proof) If $a = d(a, b) = 1$ and $a = a$                                                                |    |
|   | 2.8.1 Theorem: (with proof) If g.c.d.(a, b) = 1 and a and<br>b both divides C then ab divides C                                                              |    |
|   | b both divides C then ab divides C.<br>2.8.2 Theorem (with proof) Let a prime p divides a                                                                    |    |
|   | 2.8.2 Theorem: (with proof) Let a prime p divides a                                                                                                          |    |
|   | product ab then pla or plb.                                                                                                                                  |    |
| 3 | Logic                                                                                                                                                        | 11 |
| - | 3.1 Revision                                                                                                                                                 |    |
|   | 3.1.1 Logical propositions (statements)                                                                                                                      |    |
|   | 3.1.2 Logical connectives                                                                                                                                    |    |
|   | 3 1 3 Propositional Form                                                                                                                                     |    |
|   | 3 1 4 Truth tables                                                                                                                                           |    |
|   | 3.1.5 Tautology and contradiction                                                                                                                            |    |
|   | 3.1.6 Logical Equivalence                                                                                                                                    |    |
|   | 3.2 Algebra of propositions                                                                                                                                  |    |
|   | 3.3 Valid Arguments                                                                                                                                          |    |
|   | 3.1 Rules of inference                                                                                                                                       |    |
|   | 3.5 Methods of proofs                                                                                                                                        |    |
|   | 3.5 1 Direct proof                                                                                                                                           |    |
|   | 2.5.2 Indirect proof                                                                                                                                         |    |
|   | 5.5.2 manufactor proof                                                                                                                                       |    |
|   | 5.0 Predicates and Quantifiers                                                                                                                               |    |
| 4 | Graph Theory                                                                                                                                                 | 12 |
|   | 4.1 Graphs and Multi-graphs                                                                                                                                  | 14 |
|   | 4.2 Degree of a vertex                                                                                                                                       |    |
|   |                                                                                                                                                              |    |
|   | 4.2.2 Hand Shaking Lemma – The sum of degree of all                                                                                                          |    |
|   | 4.2.2 Hand Shaking Lemma – The sum of degree of all vertices of a Graph is equal to twice the number of edges                                                |    |

| 4.2.3 Theorem:- An undirected graph has | even number of |
|-----------------------------------------|----------------|
| vertices of odd degree.                 |                |
| 4.3 Types of graphs                     |                |
| 4.3.1 Complete graph                    |                |
| 4.3.2 Regular graph                     |                |
| 4.3.3 Bipartite graph                   |                |
| 4.3.4 Complete bipartite graph          |                |
| 4.3.5 Complement of a graph             |                |
| 4.4 Matrix representation of graph      |                |
| 4.4.1 Adjacency Matrix                  |                |
| 4.4.2 Incidence Matrix                  |                |
| 4.5 Connectivity                        |                |
| 4.5.1 Walk, trail, path and cycle.      |                |

- 2. Discrete Mathematics by S. R. Patil, M.D. Bhagat, R.S. Bhamare, D. M. Pandhare, Nirali Prakashan, Pune.
- 3. **DISCRETE MATHEMATICAL STRUCTURES** (6<sup>th</sup> Edition) by Kolman, Busby, Ross, Pearson Education (Prentice Hall)

### **Reference Books:**

1. SCHAUM'S outlines "**DISCRETE MATHEMATICS**" (Second edition) by Seymour Lipschutz, Marc Lipson, Tata McGraw-Hill Publishing Company Limited, New Delhi.

### Subject Code: - MJ-BMT23-402 Paper VIII: Integral Transform (Credit 02)

**Course Outcomes (COs)** 

- **1.** Understand the concept of Laplace Transform.
- 2. Apply properties of Laplace Transform to solve differential equations.
- **3.** Understand relation between Laplace and Fourier Transform.
- **4.** Understand infinite and finite Fourier Transform.
- **5.** Apply Fourier transform to solve real life problems.

| UNIT | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hours<br>Allotted |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1    | <ul> <li>Laplace Transform:</li> <li>1.1 Definitions; Piecewise continuity,</li> <li>1.2 Function of exponential order,</li> <li>1.3 Function of class A,</li> <li>1.4 Existence theorem of Laplace transform.</li> <li>1.5 Laplace transform of standard functions.</li> <li>1.6 First shifting theorem and Second shifting theorem and examples,</li> <li>1.7 Change of scale property and examples,</li> <li>1.8 Laplace transform of derivatives and examples,</li> <li>1.9 Laplace transform of integrals and examples.</li> <li>1.10 Multiplication by power of t and examples.</li> <li>1.11 Division by t and examples.</li> <li>1.12 Laplace transform of periodic functions and examples.</li> <li>1.13 Laplace transform of Heaviside's unit Step function</li> </ul> | 12                |
| 2    | <ul> <li>Inverse Laplace Transform:</li> <li>2.1 Definition, Standard results of inverse Laplace transform, Examples,</li> <li>2.2 First shifting theorem and Second shifting theorem and examples.</li> <li>2.3 Change of scale property and Inverse Laplace of derivatives, examples.</li> <li>2.4 The Convolution theorem and Multiplication by S, examples.</li> <li>2.5 Division by S, inverse Laplace by partial fractions, examples,</li> <li>2.6 Solving linear differential equations with constant coefficients by Laplace transform.</li> </ul>                                                                                                                                                                                                                       | 11                |

| 3 Infinite Fourier Transform:                                                                                                                                                                                                                                                                                                                                                             |                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| <ul> <li>3 Infinite Fourier Transform:</li> <li>3.1 The infinite Fourier transform and inverse: Definit examples.</li> <li>3.2 Infinite Fourier sine and cosine transform and examp Definition.</li> <li>3.3 Infinite inverse Fourier sine and cosine trans form examples.</li> <li>3.4 Relationship between Fourier transform and Lap transform.</li> </ul>                              | ion,<br>ples.<br>and<br>place |
| <ul> <li>3.5 Change of Scale Property and examples.</li> <li>3.6 Modulation theorem.</li> <li>3.7 The Derivative theorem.</li> <li>3.8 Extension theorem. Convolution theorem and examples</li> </ul>                                                                                                                                                                                     | s.                            |
| <ul> <li>Finite Fourier Transform:</li> <li>4.1 Finite Fourier Transform and Inverse, Fourier Integrals,</li> <li>4.2 Finite Fourier sine and cosine transform with examples.</li> <li>4.3 Finite inverse Fourier sine and cosine transform v<br/>examples.</li> <li>4.4 Fourier integral theorem.</li> <li>4.5 Fourier sine and cosine integral (without proof)<br/>examples.</li> </ul> | with<br>11<br>and             |

1. Laplace and Fourier Transform: J. K. Goyal, K. P.

Gupta, A Pragati Edition (2016).

2. Integral Transform: Dr. S. Shrenadh, S. Chand

### Prakashan

### **Reference Books:**

- Integral Transforms and Their Applications: B. Davies, Springer Science Business Media LLC (2002)
- 2. Laplace Transforms: Murray R. Spiegel, Schaum's outlines

## Subject Code: - MJ-BMP23-403 Mathematical Practical-IV Semester-IV

## Group A

| Sr. No | Торіс                                                                      |
|--------|----------------------------------------------------------------------------|
| 1      | Examples on Relation & Equivalence relations                               |
| 2      | Examples on Euclidean Algorithm for finding g. c. d.                       |
| 3      | Examples on types of graphs                                                |
| 4      | Examples on matrix representation of graph                                 |
| 5      | Examples on logic                                                          |
| 6      | Examples on Laplace transform of Integral                                  |
| 7      | Examples on Evaluation of integrals using properties of Laplace transform. |
| 8      | Examples on Inverse Laplace by Convolution Theorem                         |
| 9      | Examples on Infinite Fourier sine transform and inverse                    |
| 10     | Examples on Infinite Fourier cosine transform and inverse                  |

## **Group B**

| Sr. No | Торіс                                                                                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1      | <u>Function</u> : User defined functions, C-program $- {}^{n}C_{r}$ using function.                                                     |
| 2      | Numerical Integrations: (In C Program): Trapezoidal rule                                                                                |
| 3      | Simpson's $(1/3)^{rd}$ rule                                                                                                             |
| 4      | Simpson's $(3/8)^{\text{th}}$ rule.                                                                                                     |
| 5      | <u>Numerical Methods for solution of Ordinary Differential</u><br><u>Equations</u> : (Using Calculators)<br>Gaussian Elimination Method |
| 6      | Gauss – Jordan (Direct) Method                                                                                                          |
| 7      | Gauss Seidel (Iterative) Method.                                                                                                        |
| 8      | Euler Method                                                                                                                            |
| 9      | Euler Modified Method                                                                                                                   |
| 10     | Runge- Kutta Second and Fourth order method.                                                                                            |

### Minor Papers Semester: IV Subject Code: - MN-BMT23-401

### Paper VI: Basic Discrete Mathematics (Credit 02)

#### **Course Outcomes (COs)**

- 1. To extend student's logical and mathematical maturity and ability to deal with abstraction
- 2. To understand the basic concept of graph theory.
- 3. Recognize standard valid and invalid argument forms.
- 4. Describe an algorithm and evaluate the time required for performance of an algorithm.

| UNIT | Contents                                                   | Hours<br>Allotted |
|------|------------------------------------------------------------|-------------------|
| 1    | Relations                                                  | 11                |
|      | 1.1 Product sets, Relations, Inverse relation              |                   |
|      | 1.2 Pictorial representation of relations                  |                   |
|      | 1.3 Composition of relations and matrices                  |                   |
|      | 1.4 Types of relation – Reflexive, Symmetric,              |                   |
|      | Anti symmetric, Transitive and its examples                |                   |
|      | 1.5 Closure properties and its examples                    |                   |
|      | 1.6 Equivalence relations and partitions.                  |                   |
|      | 1.7 Examples on Equivalence relation                       |                   |
|      | 1.8 Partial ordering relations.                            |                   |
| 2    | Congruence Relation                                        | 11                |
| 4    | 2.1 Definition of congruence relation                      | 11                |
|      | 2.2 Examples on congruence relation.                       |                   |
|      | 2.3 Theorem: (with proof) Let m be a positive integer.     |                   |
|      | Then:                                                      |                   |
|      | (i) For any integer a, we have $a \equiv a \pmod{m}$       |                   |
|      | (ii) If $a \equiv b \pmod{m}$ , then $b \equiv a \pmod{m}$ |                   |
|      | (iii) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ , |                   |
|      | then $a \equiv c \pmod{m}$                                 |                   |
|      | 2.4. Theorem: (with proof) Let $a \equiv c \pmod{m}$ and   |                   |
|      | $b \equiv d \pmod{m}$ . then:                              |                   |
|      | (i) $a + b \equiv c + d \pmod{m}$                          |                   |
|      | (ii) $a.b \equiv c.d \pmod{m}$                             |                   |
| 3    | Logic                                                      | 11                |
|      | 3.1 Revision                                               |                   |
|      | 3.1.1 Logical propositions (statements)                    |                   |
|      | 3.1.2 Logical connectives                                  |                   |
|      | 3.1.3 Propositional Form                                   |                   |
|      | 3.1.4 Truth tables                                         |                   |
|      | 3.1.5 Tautology and contradiction                          |                   |
|      | 3 1 6 Logical Equivalence                                  |                   |

|   | 3.2 Algebra of propositions                                |    |
|---|------------------------------------------------------------|----|
|   | 3.3 Valid Arguments                                        |    |
|   | 3.4 Rules of inference                                     |    |
|   | 3.5 Methods of proofs                                      |    |
|   | 3.5.1 Direct proof                                         |    |
|   | 3.5.2 Indirect proof                                       |    |
|   | 3.6 Predicates and Quantifiers                             |    |
| 4 | Graph Theory                                               | 12 |
|   | 4.1 Graphs and Multi-graphs                                |    |
|   | 4.2 Degree of a vertex                                     |    |
|   | 4.2.2 Hand Shaking Lemma – The sum of degree of all        |    |
|   | vertices of a Graph is equal to twice the number of edges. |    |
|   | 4.2.3 Theorem:- An undirected graph has even number of     |    |
|   | vertices of odd degree.                                    |    |
|   | 4.3 Types of graphs                                        |    |
|   | 4.3.1 Complete graph                                       |    |
|   | 4.3.2 Regular graph                                        |    |
|   | 4.3.3 Bipartite graph                                      |    |
|   | 4.3.4 Complete bipartite graph                             |    |
|   | 4.3.5 Complement of a graph                                |    |
|   | 4.4 Matrix representation of graph                         |    |
|   | 4.4.1 Adjacency Matrix                                     |    |
|   | 4.4.2 Incidence Matrix                                     |    |
|   | 4.5 Connectivity                                           |    |
|   | 4.5.1 Walk, trail, path and cycle.                         |    |

- 4. **Discrete Mathematics** by S. R. Patil, M.D. Bhagat, R.S. Bhamare, D. M. Pandhare, Nirali Prakashan, Pune.
- 5. **DISCRETE MATHEMATICAL STRUCTURES** (6<sup>th</sup> Edition) by Kolman, Busby, Ross, Pearson Education (Prentice Hall)

### **Reference Books:**

2. SCHAUM'S outlines "**DISCRETE MATHEMATICS**" (Second edition) by Seymour Lipschutz, Marc Lipson, Tata McGraw-Hill Publishing Company Limited, New Delhi.

## Subject Code: - MN-BMP23-403

## Mathematical Practical-IV Semester-IV

| Sr. No | Торіс                                  |
|--------|----------------------------------------|
| 1      | Examples on Relation                   |
| 2      | Examples on Equivalence relations      |
| 3      | Examples on congruence relations       |
| 4      | Examples on logic                      |
| 5      | Examples on Predicates and Quantifiers |
| 6      | Examples on Valid Arguments            |
| 7      | Examples on types of graphs            |
| 8      | Examples on Connectivity               |
| 9      | Examples on Adjacency Matrix           |
| 10     | Examples on Incidence Matrix           |

### Semester-IV SEC-IV Machine learning with python (Theory)

### **Course Outcomes (Cos): On completion of the course, the students will able to:**

- 1. Use Python to read and write files.
- 2. Discover how to work with lists and sequence data.
- 3. To introduce students to the basic concepts and techniques of machine learning.
- 4. To develop skills of using recent machine learning.
- 5. To gain experience of doing independent study and research.

| Unit | Contents                                                              | Hours<br>Allotted |
|------|-----------------------------------------------------------------------|-------------------|
| 1    | Python Programming Language                                           | 10                |
|      | 1.1 Introduction to ML                                                |                   |
|      | 1.2 python and IDE(Installation),                                     |                   |
|      | 1.3 python programming and Inbuilt data types,                        |                   |
|      | 1.4 introduction to python loop and functions                         |                   |
|      | 1.5 NumPy package, pandas package,                                    |                   |
|      | 1.6 matplotlib -data visualization.                                   |                   |
| 2    | Introduction to Machine Learning                                      | 10                |
|      | 2.1 Descriptive statistics,                                           |                   |
|      | 2.2 hypothesis testing and process, inferential statistics,           |                   |
|      | 2.3 concepts like- regression, correlation,                           |                   |
|      | 2.4 logistic regression,                                              |                   |
|      | 2.5 introduction to Machine learning algorithms.                      |                   |
|      | 2.6 Creating machine learning Models.(Regression and Classification.) |                   |

### **Recommended Books:**

- 1. Python 3 for Absolute beginners Tim Hall and J-P Stacey
- 2. Python for Everybody Dr. Charles R. Severance

### Semester-IV SEC-V Machine learning with python

## (Practical)

| Sr. No. | Торіс                                    |
|---------|------------------------------------------|
| 1       | Data types                               |
| 2       | Loop and functions.                      |
| 3       | Python programme to display calendar     |
| 4       | Making a Simple calculator               |
| 5       | Understanding Data through Visualization |
| 6       | Understanding Data stastically.          |
| 7       | Creating regression Model                |
| 8       | Creating classification Model            |

